Starting from:

$30

CS2214 Assignment #5 solution

CS2214 
Assignment #5

Submission: on the OWL web site of the course
Problem 1 (Relations) [25 marks]
1. Show that the relation
R = {(x, y)| (x − y) is an even integer}
is an equivalence relation on the set R of real numbers.
Given a set R={(x, y) | x – y is an even number}
To prove equivalence, we need to prove the relation are reflexive,
symmetric and transitive.
1. To prove reflexive, we need to prove:
a) x ∈    A    → (x, x) ∈    R
x    is belonging to    a    not    empty    set therefore x ∈    A
for    all    x,    x    –    x    is    always    0,    and    0    is    an    even    number
therefore (x, x) ∈    R
The    relation    is    reflexive
2. To    prove symmetric,    we    need    to    prove:
a) (x,    y)    ∈    R    → (y, x)    ∈    R
We    know    that    (x,    y)    ∈    R    therefore:
x    –    y    =    a    (where    a    is    an    even    number)    
y    –    x    =    –    a    
– a    is    also    an    even    number,    (y, x)    ∈    R
The    relation is    symmetric    
3. To    prove transitive,    we    need    to    prove:
a) (x,    y)    ∈    R    ∧    (y, z)    ∈    R    → (x, z)    ∈    R
By    (x, y)    ∈    R,    we    can    have:
x    –    y    =    k    (where    k    is    an    even    number)    
because    k    is    an    even    number    k=2a    (where    a    is    an    integer)    
x    –    y    =    2a
Similarly,    by    having (y, z)    ∈    R,    we    can    have:    
y    –    z    =    2b    (where    b    is    an    integer)    
x    –    z    =    (y    +    2a)    –    z    =    (2b    +    z    +    2a)    –    z    =    2(a    +    b)    
2(a    +    b)    is    always    an    even    number    
Thus,    (x, z)    ∈    R.    
     The    relation is    transitive
Because    the    relation of    set    R    are reflexive, symmetric and transitive,
it is an equivalence relation.
2. Show that the relation
R = {((x1, y1),(x2, y2)) (x1 < y1) or ((x1 = y1) and (x2 < y1))}
is a total ordering relation on the set R × R.
R = {( (x1, y1), (x2, y2) ) (x1 < y1) or ( (x1 = y1) and (x2 < y1) ) } is a total
ordering relation on the set R × R.
To prove a set is total ordering set, we need to prove that:
every two elements of S are comparable
This is the more readable version of the above question:
R = { (x1, y1), (x2, y2) | (x1 < y1) ∨     (x1 = y1 ∧ x2 < y1) }
In this set, either (x1 < y1) or x1 = y1 and x2 < y1
therefore, this is a comparable set.
To prove it is a total order, we need to prove it is a binary relation set which also
every set element is antisymmetric, transitive and connex relation
(see this https://en.m.wikipedia.org/wiki/Total_order).
4. To    prove reflexive,    we    need    to    prove:
a) x ∈    A    → (x, x) ∈    R
if (x1, y1) == (x2, y2), then it satisfies x1 == x2 and y1 ≤ y2
Therefore,    it    is    reflexive
5. To    prove antisymmetric,    we    need    to    prove:
a) not    (x,    y)    ∈    R    → (y, x)    ∈    R
if    x1    <    x2    then    x1    is    smaller    than    x2,    x2    is    not    smaller    than    x1
Therefore    it    is    antisymmetric    
6. To    prove    connex,    we    need    to    prove
a) ∀x∀y (x ∈ X ∧ y ∈ X) ⇒ (xRy ∨ yRx ).
x1    ∈ X and y1 ∈ X and
we can find that x1y1 is in the set R and so yRx
Therefore, the set is connex
Overall    the    set    R    is    in    total    order.    
Problem 2 (Basic probability calculations) [25 marks] In a roulette,
a wheel with 38 numbers is spun. Of these, 18 are red, and 18 are black.
The other two numbers, which are neither black nor red, are 0 and 00. The
probability that when the wheel is spun it lands on any particular number
is 1/38.
1. What is the probability that the wheel lands on a red number?
2. What is the probability that the wheel lands on a black number twice
in a row?
3. What is the probability that the wheel lands on 0 or 00?
4. What is the probability that in five spins the wheel never lands on
either 0 or 00?
In    this    sample    space    S,    if    we    spun    only    one    time,    
we    can    only    land    on    either    red,    black,    00 or    0.         
|S|    =    38,    |red|    =    18,    |black|    =    18,    |00|    =    1,    |0|    =    1    
Therefore 1    =    P(red)    +    P(black)    +    P(00)    +    P(0)    and    38    =    18    +    18    +    1    +    1
1) P(red)    =    |red|    /    |S|    =    18    / 38    ~= 0.47
2) P(black)    =    |black|    /    |S|    =    18    / 38    ~= 0.47
a) because it is twice, the answer is (0.47)*0.47
3) P(00    and    0)    =    |00    and    0|    / |S|    =    2/    38    ~= 0.05
4) P(not    00    and    0)    =    |not    00    and    0|    / |S|    =    36/38    ~= 0.94
the    above    is    the probability    for    one    spin.    the    five    spin    is    (36/38)
5    ~=
0.73
Problem 3 (Bayes theorem) [25 marks] Suppose that 8% of all bicycle racers use steroids, that a bicyclist who uses steroids tests positive for
steroids 96% of the time, and that a bicyclist who does not use steroids tests
positive for steroids 9% of the time (this is a “false positive” test result).
1. What is the probability that a randomly selected bicylist who tests
positive for steroids actually uses steroids?
2. What is the probability that a randomly selected bicyclist who tests
negative for steroids did not use steroids?
S    denotes    that bicyclist use    steroid.    
T    denote test    is positive.    
By    reading    the    content I    gather that:    
P(S)    =    0.08    
P(¬S)    =    0.92    
P(S∩T)    =    0.96    
P(S∩¬T)    =    0.04    
P(¬S∩T)    =    0.09    
P(¬S∩¬T)    =    0.91
1) Already    know    that    the test is    positive,    how many of them    use steroid?
P(S|T)    =    P(T|S)    *    P(S)    / P(T|S)    *    P(S)    + P(T|¬S)    * P(¬S)
P(T|S)    =    P(T∩S)    / P(S)    =    0.96/0.08 =    12
P(T|¬S)    =    P(T∩¬S)    / P(¬S)    =    0.09/0.92    =    98%
Therefore,     P(S|T)    is    equal    to
=    12    *    0.08    / 12    *    0.08    + 0.098    * 0.92    =    91.4%
2) Already    know    that    the    test    is    negative,    how    many    of    them did not use    
steroid?P(¬S|¬T)    =    P(¬T    |¬S)    *    P(¬S)    /    P(¬T    |¬S)    *    P(¬S)    +    P(¬T    |S)    *    
P(S)P(¬T    |¬S)    *    P(¬S)    =    P(¬T∩¬S)    /    P(¬S)    *    P(¬S)    =    P(¬T∩¬S)    =    0.91
P(¬T    |S)    *    P(S)    =    P(¬T∩S)    /    P(S)    *    P(S)    =    P(¬T∩S)    =    0.04
P(¬S|¬T) = 0.91 / (0.91 + 0.04) = 0.958
Problem 4 (Graphs) [25 marks] For each of the following two graphs,
determine whether or not it has an Euler circuit. Justify your answers. If
the graph has an Euler circuit, use the algorithm described in class to find
it, including drawings of intermediate subgraphs.
If a graph has an Euler circuit then the degree of every
vertex must be even.
Which means:
If the degree of one vertex are not even, then
there will be no Euler circuit exist. This graph satisfy the
condition. Then we can use the algorithm to test it.
Theorem: A connected multigraph with
at least two vertices has an Euler circuit
if and only if each of its vertices has an
even degree
and
it has an Euler path if and only if it has
exactly two vertices of odd degree.
This graph does not have Euler circuit, because not all
deg is even.
but there is a Euler Path exists